5x^2+32+7x^2=180

Simple and best practice solution for 5x^2+32+7x^2=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x^2+32+7x^2=180 equation:



5x^2+32+7x^2=180
We move all terms to the left:
5x^2+32+7x^2-(180)=0
We add all the numbers together, and all the variables
12x^2-148=0
a = 12; b = 0; c = -148;
Δ = b2-4ac
Δ = 02-4·12·(-148)
Δ = 7104
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7104}=\sqrt{64*111}=\sqrt{64}*\sqrt{111}=8\sqrt{111}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{111}}{2*12}=\frac{0-8\sqrt{111}}{24} =-\frac{8\sqrt{111}}{24} =-\frac{\sqrt{111}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{111}}{2*12}=\frac{0+8\sqrt{111}}{24} =\frac{8\sqrt{111}}{24} =\frac{\sqrt{111}}{3} $

See similar equations:

| 10x-1=14x-31 | | 4−9b=–8b−6 | | C(q)=8000+6q | | n^-41n+144=0 | | 11x-7x-8=1-x | | 2+v=8 | | -3(a+5)=2a | | 24=4x(2x) | | |2x+1|=25 | | |n-1|-5=6 | | -3x²=-42 | | 9(m−2)=m+40 | | 3c+1=7+c | | A=13x+5B=8x+30 | | −7a−10=20−3a | | x/3=9 | | 3(4f-12)=12f-36 | | |-4n|=40 | | 5x+110=150 | | 3/(x÷1)=1/2 | | 2^n+8=2^5n | | 30=10x | | h=-16^2+45 | | 0.9/0.18=n/0.12 | | 8=15q | | 55/b+3=8 | | 30n+75=210 | | 5(n-15)=35 | | 30+75n=210 | | (-19x+18)+(7x+1)+(10x-9)=180 | | —18=3x-9 | | 10.49=16+3y |

Equations solver categories